Marveling At The Historical

Math Oldies But Goodies

  • About This Blog

    This blog is mostly about math procedures in textbooks dated from about 1825-1900. I’m writing about them because some of the procedures are exquisite and much more powerful, and simpler, than some of the procedures in current text books. Really!

    I update this blog as frequently as possible ... every 2-3 days. And, if you are a lover of old texts and unique procedures, you might want to talk to me about them, at I’m not an antiquarian; the books I have are dusty, musty, brown-paged scribbled-in texts written by authors with insights into how math works. Unfortunately, most of their procedures have vanished. They’ve been overcome by more traditional perspectives, but you have to realize that at that time, they were teaching the traditional methods.

A Student’s Aha Moment

Posted by mark schwartz on October 12, 2016


One more example of how an aggregation of student’s imaginations led the class, including the instructor, to apply Algebra to Algebra. A type of problem which frequents texts in the U.S. is the ‘mixture’ problem. Mixing solutions of different concentrations to get a third with a desired concentration; mixing different kinds of candy or nuts to get a mixture to sell at a certain price, or getting a return on investing in two accounts at different interest rates (and other applications).

The Story

Gus has on hand a 5% alcohol solution and a 20% alcohol solution. He needs 30 liters of a 10% alcohol solution. How many liters of each solution should he mix together to obtain the 30 liters?

The classical solution is to write the equation .05x + .20(30 – x) = .10 (30). Solving the equation, the outcome is 20 liters at 5% and 10 liters at 20%.

As this type of problem was discussed, one student asked “can 15+x and 15-x be used, since they add to the total of 30 and this seems easier?” I wasn’t certain if it would work nor why it seemed easier, but we explored the idea. The student presented the problem on the board as 5(15 + x) + 20(15 – x) = 10 (30). Not only did he re-craft the unknowns, but he used whole numbers, not decimals. When asked why, he simply stated that we would be getting rid of the decimals anyway. I noted that ‘getting rid of’ is not a mathematical operation, but clearly it works. The answer to this equation is -5, and some students believed this solution to be awkward for two reasons. First because x = -5, and a negative quantity doesn’t make sense and second, because finding x doesn’t finish the problem. Recall that the unknowns in the equation are 15+x and 15–x, so another step is required to come to the correct answer of 20 liters at 5% and 10 liters at 20%. Then the question came: “Isn’t there another way to do this?”

At this point, I introduced “Alligation”, a procedure described in detail in a post in this blog titled Mixing it up with Alligation. I won’t go into detail about the procedure, so look it up if you’re interested. It’s a very different approach which was popular in the 1800s but doesn’t seem to be in any current texts.

We did discuss several other ideas and it was an enjoyable session in which the class actually reported having fun doing Algebra!


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: